Over deze cursus
Due to their sessile nature, plants have developed a vast array of adaptation mechanisms to cope with seasonal or sudden changes in the growth environment. These adaptation mechanisms mostly consist of species-, environment- and stress- specific changes in the basal morphological and physiological processes, shared by all plants. The success with which plants are able to survive under a wide range of environmental stresses (high and low temperature; drought, humid and flooded conditions; high concentrations of salt; shadow and high light; mechanical (wind) stress; etc.) is based on their high plasticity and the flexibility of their morphology and physiology. This is expressed in adaptations in relation to e.g.:
- uptake, exchange and transport of water and nutrients;
- photosynthesis;
- (dynamics of) architecture of plants;
- biomechanics of structural strength;
- responses to stress conditions;
- reproductive behaviour; etc.
The course focuses on mechanisms, regulation and genetic principles of plasticity in structure and physiology needed for plants to adapt to environmental variations and extremes. Lecturers from different disciplines in plant science will contribute varying topics within the scope of the course.
Leerresultaten
Compare the various adaptations of plants to different conditions that affect photosynthesis (e.g. low/high light, availability of water and CO2 etc.)
Discuss the role of light (quality) perception in the development of plants in relation to their (competitive) environment
Explain shoot and root branching response of a plant to an environmental signal based on the underlying regulation network
Compare the different survival strategies of plants to flooding, drought, desiccation, salt and extreme temperatures, as well as the evolution and diversity of various reproduction strategies, focusing on seed survival in relation to (global) climate and environment/stress
Explain and access the basis of genetic variation involved in adaptation to various types of stress, remember how natural variation occurs, how it is maintained, how it can be used for understanding physiological processes and how it can be measured
Explain the reasons for the development of high throughput phenotyping systems, name different (high throughput) phenotyping systems, understand the principles behind them and discuss the advantages and disadvantages of different phenotyping systems
Describe the evolution and diversity of different reproduction and flowering strategies, focusing on differences in strategies for pollination, fruit formation, seed dispersal and seed survival in relation to climate and environment
Formulate a research question and execute the practical experiments needed to answer this question, discuss experimental data, including statistical analysis, and report a scientific research through oral and written presentations
Formulate a research question related to an assigned topic, consult the literature needed to address this question, integrate and discuss the relevant literature and formulate an integrated conclusion, and present all this in an review article
Toetsing
- Written test with open and closed questions (60%) Approximately 75% of the questions is aimed at the theory, and 25% of the questions is aimed at the content and skills taught in the practical classes.
- Assignment other (30%) Review existing literature and write a review article (2-3 students). In case minimum partial grade has not been achieved, an adapted version can be submitted during the whole academic year after consultation with the course coordinator.
- Performance (%) Participation in practicals and pre-/post class exercises.
- Written test with closed questions (10%) Midterm exam with questions on the first part of the theory
Voorkennis
ZSS06100 Laboratory Safety Basic knowledge on plant physiology, plant cell biology, and genetics, as taught in: GEN11806 Fundamentals of Genetics and Molecular Biology; CLB10803 Reproduction of Plants; PPH10806 Structure and Function of Plants, or equivalent courses.
Bronnen
- H. Lambers [et al.](2008). Plant Physiological Ecology, 2nd ed. New York, US: Springer. 605p. ISBN 978-0-387-78341-3; ISBN: 978-0-387-78340-6.
Aanvullende informatie
- Neem contact op met een coordinator
- Niveaumaster
- Instructievormop de campus
Startdata
11 mei 2026
tot 5 jul 2026